Ciąg liczbowy Fibonacciego

Spośród wszystkich ciągów liczbowych, które występują, jeden jest szczególnie interesujący. Ciąg ten zawdzięcza swoją nazwę matematykowi z Pizy, Leonardowi, który pod nazwiskiem Fibonacci wydał w 1202 roku słynną księgę Liber Abaci. Ojciec Leonarda nosił przydomek Bonacci, stąd syn został Fibonaccim (filius Bonacci - syn dobrotliwego) Liczby naturalne tworzące ciąg o takiej własności, że kolejny wyraz (z wyjątkiem dwóch pierwszych) jest sumą dwóch poprzednich nazywa się liczbami Fibonacciego i pojawiają się w tak wielu sytuacjach, że wydaje się to niemożliwe.

Ciąg Fibonacciego to ciąg liczb określony rekurencyjnie w sposób następujący:
F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2,   dla n ≥ 2

Początkowe wartości tego ciągu to:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Podstawowy ciąg liczb Fibonacciego to: 1, 1, 2, 3, 5, 8, ... Każda liczba w ciągu jest sumą dwóch poprzednich (poza pierwszą i drugą). Mamy więc do czynienia z ciągiem rekurencyjnym. Ciąg liczbowy Fibonacciego jest pierwszym ze znanych ciągów tego rodzaju.

W wyniku podzielenia każdej z liczb ciągu przez jej poprzednik otrzymuje się iloraz oscylujący wokół 1,618 - liczby złotego podziału. W miarę zwiększania się liczb zmniejszają się odchylenia od tej wartości. Dokładna wartość granicy jest złotą liczbą: Φ = 5 + 1 2 = 1,6180339887498948482...

Wygeneruj n początkowych liczb Fibonacciego.

  


Liczby Fibonacciego można wyznaczyć ze wzoru:
Fn+1 = n 0 + n-1 1 + n-2 2 + ...
Liczby Fibonacciego są więc sumami liczb z przekątnych w trójkącie Pascala.


Ciąg Fibonacciego można odnaleĽć w wielu aspektach przyrody, ciąg taki opisuje np. liczbę pędów rośliny jednostajnie przyrastającej w latach. W słoneczniku możemy zaobserwować dwa układy linii spiralnych, wychodzących ze środka. Liczba linii rozwijających się zgodnie z ruchem wskazówek zegara wynosi 55 i tylko 34 skręconych w przeciwną stronę. Takie same spirale można zaobserwować na wielu innych roślinach ( np. kalafior, ananas). Liczby spiral występujących w tych roślinach są kolejnymi liczbami Fibonacciego.

Złotymi proporcjami wyznaczonymi na podstawie ciągu Fibonacciego posługiwał się w swoim malarstwie Leonardo da Vinci i Botticelli. W XX wieku ciąg Fibonacciego stosowany był także przez niektórych kompozytorów do proporcjonalnego porządkowania rytmu lub harmonii. Na ciągu Fibonacciego zbudowane jest między innymi Trio klarnetowe Krzysztofa Meyera.
Złote proporcje wykorzystano także podczas wznoszenia piramidy Cheopsa w Gizie i Partenonu w Grecji.

Liczby pierwsze
Kilka początkowych wyrazów w ciągu Fibonacciego to liczby pierwsze: 2, 3, 5, 13, 89, 233, 1597, 28657, 514229. Otwarty pozostaje problem rozstrzygalności, czy liczb pierwszych w ciągu Fibonacciego jest nieskończenie wiele.

matematyka » ciekawostki » liczby » liczby Fibonacciego




gość logowanie

© 2014 Mariusz Śliwiński      mapa | o serwisie | kontakt | rss online: 22 drukuj