logowanie

matematyka » forum » forum zadaniowe - szko砤 ponadpodstawowa » zadanie

Liczby rzeczywiste, zadanie nr 1179

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

annulka
post贸w: 30
2011-12-23 13:02:22

Wyka偶, 偶e dla ka偶dej liczby ca艂kowitej n liczba:
a) $\frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6}$ jest ca艂kowita

b) $\frac{n^4}{24} + \frac{n^3}{4} + \frac{11n^2}{24} + \frac{n}{4}$ jest ca艂kowita


Z g贸ry dzi臋kuj臋 ;)

Wiadomo艣膰 by艂a modyfikowana 2011-12-23 16:46:54 przez Szymon

Szymon
post贸w: 657
2011-12-23 16:55:06

a)

$\frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6} = k$
k - liczba ca艂kowita
$\frac{n}{3} + \frac{n^2}{2} + \frac{n^3}{6} = k/\cdot6$
$2n + 3n^2 + n^3 = 6k$
Wyra偶enie $2n + 3n^2 + n^3$ musi by膰 podzielne przez 6 dla ka偶dej liczby naturalnej n.
$n^3 + 3n^2 + 2n = 6k$
$n^3 + n^2 + 2n^2 + 2n = 6k$
$n^2(n+1) + 2n(n+1) = 6k$
$n^2(n+1) + 2n(n+1) = 6k$
$(n+1)(n^2+2n) = 6k$
$(n+1)(n(n+2)) = 6k$
$n(n+1)(n+2) = 6k$
$n(n+1)(n+2)$ To wyra偶enie kt贸re jest iloczynem trzech kolejnych liczb naturalnych , w艣r贸d nich jest na pewno liczba parzysta(podzielna przez 2) i liczba podzielna przez 3. A liczba podzielna przez 6 jest podzielna przez 2 i 3.

Wiadomo艣膰 by艂a modyfikowana 2011-12-23 20:36:49 przez Szymon

irena
post贸w: 2636
2011-12-26 10:03:55

$\frac{n^4}{24}+\frac{n^3}{4}+\frac{11n^2}{24}+\frac{n}{4}=\frac{n^4+6n^3+11n^2+6n}{24}$

$n^4+6n^3+11n^2+6n=n(n^3+6n^2+11n+6)=n(n^3+n^2+5n^2+5n+6n+6)=$

$=n[n^2(n+1)+5n(n+1)+6(n+1)]=n(n+1)(n^2+5n+6)=$

$=n(n+1)(n+2)(n+3)$

Liczba n(n+1)(n+2)(n+3) to iloczyn czterech kolejnych liczb naturalnych. W艣r贸d czterech kolejnych liczb naturalnych musi by膰 liczba podzielna przez 3. Musi by膰 te偶 w艣r贸d nich liczba podzielna przez 4 oraz jedna liczba parzysta, kt贸ra w dzieleniu przez 4 daje reszt臋 r贸wn膮 2.
Iloczyn takich liczb dzieli si臋 wi臋c przez $3\cdot4\cdot2=24$.
Liczba n(n+1)(n+2)(n+3) dzieli si臋 przez 24, czyli n(n+1)(n+2)(n+3)=24k, gdzie k jest liczb膮 ca艂kowit膮.
St膮d liczba
$\frac{n^4+6n^3+11n^2+n}{24}=\frac{24k}{24}=k\in C$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj