logowanie

matematyka » forum » forum zadaniowe - szko砤 ponadpodstawowa » zadanie

Inne, zadanie nr 1892

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

pm12
post贸w: 493
2012-06-16 19:06:36

Wyka偶, 偶e:

a)

a$\neq$b $\wedge$ b$\neq$c $\wedge$ c$\neq$a (to wiemy)

$\frac{b-c}{(a-b)(a-c)}$ + $\frac{c-a}{(b-c)(b-a)}$ + $\frac{a-b}{(c-a)(c-b)}$ = $\frac{2}{a-b}$ + $\frac{2}{b-c}$ + $\frac{2}{c-a}$

b)

a$\neq$b $\wedge$ b$\neq$c $\wedge$ c$\neq$a (to wiemy)

$a^{2}$ * $\frac{(x-b)(x-c)}{(a-b)(a-c)}$ + $b^{2}$ * $\frac{(x-c)(x-a)}{(b-c)(b-a)}$ + $c^{2}$ * $\frac{(x-a)(x-b)}{(c-a)(c-b)}$ = $x^{2}$

c)

$\frac{x}{a}$ + $\frac{y}{b}$ + $\frac{z}{c}$ = 1 (to wiemy)

$\frac{a}{x}$ + $\frac{b}{y}$ + $\frac{c}{z}$ = 0 (to wiemy)

$\frac{x^{2}}{a^{2}}$ + $\frac{y^{2}}{b^{2}}$ + $\frac{z^{2}}{c^{2}}$ = 1 (do wykazania)


agus
post贸w: 2387
2012-06-17 20:03:41

c)

drugie r贸wnanie:

$\frac{ayz+bxz+cxy}{xyz}$=0
st膮d
ayz+bxz+cxy=0 (1)

pierwsze r贸wnanie po podniesieniu do kwadratu:

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1$

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}+\frac{2(cxy+ayz+bxz)}{abc}=1$
i po uwzgl臋dnieniu (1)
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$


agus
post贸w: 2387
2012-06-17 20:39:34

a)
lew膮 i praw膮 stron臋 r贸wnania sprowadzamy do wsp贸lnego mianownika

L=$\frac{(b-c)^{2}+(a-c)^{2}+(a-b)^{2}}{(a-b)(a-c)(b-c)}=\frac{b^{2}+c^{2}-2bc+a^{2}+c^{2}-2ac+a^{2}+b^{2}-2ab}{(a-b)(a-c)(b-c)}=\frac{2a^{2}+2b^{2}+2c^{2}-2ab-2ac-2bc}{(a-b)(a-c)(b-c)}$

P=$\frac{2(a-c)(b-c)+2(a-b)(a-c)-2(a-b)(b-c)}{(a-b)(a-c)(b-c)}=\frac{2ab-2ac-2bc+2c^{2}+2a^{2}-2ac-2ab+2bc-2ab+2ac+2b^{2}-2bc}{(a-b)(a-c)(b-c)}=\frac{2a^{2}+2b^{2}+2c^{2}-2ab-2ac-2bc}{(a-b)(a-c)(b-c)}$

L=P


agus
post贸w: 2387
2012-06-17 21:14:08

b)

sprowadzamy lew膮 stron臋 do wsp贸lnego mianownika

L=$\frac{a^{2}(x-b)(x-c)(b-c)-b^{2}(x-c)(x-a)(a-c)+c^{2}(x-a)(x-b)(a-b)}{(a-b)(a-c)(b-c)}$=

po wymno偶eniu wyraz贸w i redukcji wyraz贸w podobnych w liczniku i mianowniku u艂amka

=$\frac{x^{2}a^{2}b-x^{2}a^{2}c-x^{2}ab^{2}+x^{2}b^{2}c+x^{2}ac^{2}-x^{2}bc^{2}}{a^{2}b-ab^{2}-a^{2}c+ac^{2}+b^{2}c-bc^{2}}=x^{2}$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj