Stereometria, zadanie nr 2649
ostatnie wiadomo艣ci | regulamin | latex
| Autor | Zadanie / Rozwi膮zanie |
owca post贸w: 1 | 2013-03-17 18:19:10W ostros艂upie prawid艂owym tr贸jk膮tnym cosinus k膮ta nachylenia 艣ciany bocznej do podstawy r贸wny jest 1/9. Wykorzystuj膮c wz贸r sin 2α = 2 sin α cos α, wyznaczy膰 sinus k膮ta mi臋dzy 艣cianami bocznymi tego ostros艂upa. |
naimad21 post贸w: 380 | 2013-03-17 19:03:56![]() Je艣li chcemy skorzystac ze wzoru $sin2\alpha=sin\alpha*cos\alpha$ musimy, najpierw wyznaczy膰 d i f, ale wszystko w swoim czasie ;) Je艣li $cos\beta=\frac{1}{9}$ to $\frac{1}{9}=\frac{b}{h}\Rightarrow h=9b$ Wysoko艣膰 podstawy $\frac{a\sqrt{3}}{2}$ $b=\frac{1}{3}*\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{6}$ $h=9*\frac{a\sqrt{3}}{6} \Rightarrow h=\frac{3\sqrt{3}}{2}$ Teraz liczymy pole boku ostros艂upa. $P=\frac{1}{2}*h*a \Rightarrow P=\frac{1}{2}*\frac{3\sqrt{3}a}{2}*a=\frac{3\sqrt{3}a^{2}}{4}$ Z twierdzenia Pitagorasa liczymy c. $c^{2}=h^{2}+(\frac{1}{2}a)^{2}$ $c^{2}=(\frac{3\sqrt{3}a}{2})^{2}+(\frac{1}{2}a)^{2}$ $c^{2}=\frac{27a^{2}}{4}+\frac{a^{2}}{4}$ $c^{2}=\frac{28a^{2}}{4}$ $c^{2}=7a^{2}$ $c=a\sqrt{7}$ Jak ju偶 mamy C to z por贸wnywania pola 艣ciany bocznej, mo偶emy wyznaczy膰 d. $P=\frac{1}{2}d*c$ $\frac{3\sqrt{3}a^{2}}{4}=\frac{1}{2}d*a\sqrt{7}$ $d=\frac{3\sqrt{3}}{2\sqrt{7}}a$ $d=\frac{3\sqrt{21}}{14}a$ Maj膮c d, mo偶emy policzy膰 $sin\alpha$ $sin\alpha=\frac{a}{2d}$ $sin\alpha=\frac{14}{6\sqrt{21}}$ $sin\alpha=\frac{14\sqrt{21}}{126}$ $sin\alpha=\frac{\sqrt{21}}{9}$ Z jedynki trygonometrycznej mo偶na policzy膰 $cos\alpha$. $cos^{2}\alpha+sin^{2}\alpha=1$ $cos^{2}\alpha=1-\frac{21}{81}$ $cos^{2}\alpha=\frac{60}{81}$ $cos\alpha=\frac{2\sqrt{15}}{9}$ $sin2\alpha=2\frac{\sqrt{21}}{9}*\frac{2\sqrt{15}}{9}$ $sin2\alpha=\frac{4\sqrt{35}}{27}$ Mam nadzieje, ze si臋 nigdzie nie pomyli艂em w obliczeniach ;) Wiadomo艣膰 by艂a modyfikowana 2013-03-17 19:36:22 przez naimad21 |
| strony: 1 | |
Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj
2013-03-17 18:19:10