logowanie

matematyka » forum » forum zadaniowe - szko砤 ponadpodstawowa » zadanie

Trygonometria, zadanie nr 4082

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

kundzia5
post贸w: 12
2014-03-08 21:49:22

1. Dany jest tr贸jk膮t r贸wnoramienny o podstawie 48 i ramieniu 26. Wyznacz warto艣膰 sin k膮ta przy podstawie tr贸jk膮ta.
2. Wyka偶, 偶e dla k膮ta ostrego alfa prawdziwa jest r贸wno艣膰 cos kwadrat alfa razy sin alfa + sin kwadrat alfa = sin alfa.

Dzi臋ki za pomoc.


agus
post贸w: 2387
2014-03-08 21:58:06

1.
Wysoko艣膰 tr贸jk膮ta poprowadzona z wierzcho艂ka dzieli go na dwa tr贸jk膮ty prostok膮tne o przyprostok膮tnej 24 i przeciwprostok膮tnej 26. Z twierdzenia Pitagorasa druga przyprostok膮tna (wysoko艣膰) wynosi:
$h^{2}=26^{2}-24^{2}$
$h^{2}$=100
h=10

$sin \alpha=\frac{10}{26}=\frac{5}{13}$


agus
post贸w: 2387
2014-03-08 22:03:15

2.Chyba powinno by膰:
$cos^{2}\alpha\cdot sin\alpha+sin^{3}\alpha=sin\alpha$

L= $cos^{2}\alpha\cdot sin\alpha+sin^{3}\alpha=sin\alpha(cos^{2}\alpha+sin^{2}\alpha)=sin\alpha=P$


kundzia5
post贸w: 12
2014-03-08 22:29:48

Wiadomo, 偶e sinus kwadrat alfa=jedna druga i 0<alfa<90. Oblicz miar臋 k膮ta alfa.

Wielkie dzi臋ki


agus
post贸w: 2387
2014-03-08 23:13:39

$sin^{2}\alpha=\frac{1}{2} i 0<\alpha<90^{0}$
st膮d

$sin\alpha=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} i \alpha=45^{0}$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj