logowanie

matematyka » forum » forum zadaniowe - szko砤 ponadpodstawowa » zadanie

Trygonometria, zadanie nr 4502

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

aress_poland
post贸w: 66
2014-09-07 21:02:55

Wyka偶, 偶e:
[\sqrt{5-2\sqrt{6}}\cdot (49+20\sqrt{6})^{\frac{1}{4}}=1]


tumor
post贸w: 8070
2014-09-07 21:16:13

Wida膰, 偶e obie strony s膮 dodatnie. Dwie dodatnie liczby s膮 r贸wne wtedy i tylko wtedy, gdy r贸wne s膮 ich czwarte pot臋gi, wi臋c mo偶emy sobie spot臋gowa膰. Mamy zatem pokaza膰, 偶e

$(5-2\sqrt{6})^2(49+20\sqrt{6})=1$
czyli
$(49-20\sqrt{6})(49+20\sqrt{6})=1$
co jest prawd膮 do艣膰 oczywist膮 ze wzoru skr贸conego mno偶enia, bo
$49^2-20^2*6=2401-2400=1$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj