logowanie

matematyka » forum » liceum » zadanie

Funkcje, zadanie nr 4899

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

owczar0005
postów: 144
2015-01-14 17:21:39

Proszę o pomoc. Funkcja f każdej liczbie całkowitej dodatniej przyporządkowuje liczbę jej dzielników naturalnych.
a) funkcja g określona jest następująco : g(n)=f(n)-2 dla każdej liczby całkowitej dodatniej n . Ile miejsc zerowych należących do zbioru {1,2,3,...,20} ma funkcja g ?


Aneta
postów: 1255
2015-01-14 17:35:22

Każdą liczbę naturalną można zapisać :

n=$l_{1}^{s_{1}}l_{2}^{s_{2}}*...*l_{k}^{s_{k}}$

gdzie $l_{1},...,l_{k}$ to liczby pierwsze
$s_{1},...,s_{k}$ wykładniki naturalne

$f(n)=(1+s_{1})(1+s_{2})*...*(1+s_{k})$

Wiadomość była modyfikowana 2015-01-14 17:48:40 przez Aneta

Aneta
postów: 1255
2015-01-14 17:51:18

g(n)=0 $\iff$ f(n)-2=0 czyli f(n)=2

Zatem należy wyznaczyć wszystkie liczby ze zbioru, które mają tylko dwa dzielniki naturalne.


owczar0005
postów: 144
2015-01-14 18:51:53

nie rozumiem . Można jakoś łatwiej to rozwiązać ?



agus
postów: 2296
2015-01-14 19:46:38

Funkcja f każdej liczbie ze zbioru {1,2,3,...,20} przyporządkowuje liczbę jej dzielników naturalnych,a g(n)=f(n)-2

Dla n, które jest liczbą pierwszą (ma dwa dzielniki) funkcja g ma miejsce zerowe, bo wtedy g(n)=0

Liczby pierwsze ze zbioru powyżej to: 2,3,5,7,11,13,17,19, czyli miejsc zerowych jest 8.


owczar0005
postów: 144
2015-01-14 19:54:00

Dzięki :)

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2017 Mariusz Śliwiński      o serwisie | kontakt online: 129 drukuj