logowanie

matematyka » forum » forum zadaniowe - szkoła ponadpodstawowa » zadanie

Trygonometria, zadanie nr 5319

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

nacix
postów: 22
2015-05-06 10:12:23

Wykaż, że

sin47+sin61-sin11-sin25=cos7

$sin^{4} \alpha$+$cos^{4} \alpha$=1-$\frac{1}{2}sin^{2}2 \alpha$


irena
postów: 2636
2015-05-06 10:22:26

$sin^4\alpha+cos^4\alpha=(sin^2\alpha+cos^2\alpha)^2-2sin^2\alpha cos^2\alpha=$

$=1^2-\frac{1}{2}\cdot(2sin\alpha cos\alpha)^2=1-\frac{1}{2}sin^22\alpha$


nacix
postów: 22
2015-05-06 10:30:44

Dziękuję, a masz jakiś pomysł na ten pierwszy przykład?


irena
postów: 2636
2015-05-06 11:42:02

$sin47^0+sin61^0-sin11^0-sin25^0=2sin54^0cos7^0-2sin18^0cos7^0=2cos7^0(sin54^0-sin18^0)=$

$=2cos7^0\cdot2sin18^0cos36^0=$

$=4cos7^0\cdot sin18^0\cdot cos36^0=4cos7^0\cdot\frac{\sqrt{5}-1}{4}\cdot\frac{\sqrt{5}+1}{4}=\frac{1}{4}cos7^0\cdot(5-1)=cos7^0$

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2019 Mariusz Śliwiński      o serwisie | kontakt online: 31 drukuj