logowanie

matematyka » forum » forum zadaniowe - szkoła ponadpodstawowa » zadanie

Trygonometria, zadanie nr 548

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

pawelek
postów: 10
2011-01-30 10:46:21

Witam serdecznie,
czy jest ktoś w stanie rozwiązać mi poniższe zadanie?

Sprawdź, czy podane równości są tożsamościami trygonometrycznymi.
Podaj konieczne założenia.

a) $\cos \alpha \cdot \frac{\tg \alpha}{\sin \alpha} = 1$

b) $1-2 \sin^2 \alpha = 2\cos^2 \alpha - 1$

c) $\frac{\sin \alpha + \tg \alpha}{\sin \alpha} = 1 + \frac{1}{\cos \alpha}$

d) $\frac{\sin \alpha + \cos \alpha}{\cos \alpha} = 1 + \tg \alpha$

e) $\left( \cos^2 \alpha - 1 \right) \left( \tg^2 \alpha + 1 \right) + \tg^2 \alpha = 0$

f) $\left( \frac{1}{\sin \alpha} - \frac {1}{\cos \alpha} \right) \left( \sin \alpha + \cos \alpha \right) = \ctg \alpha - \tg \alpha$

g) $\left( 1 - \cos \alpha \right) \left( 1 + \sin \alpha \right) = \cos^2 \alpha - 1$

h) $\frac{ 1 - \cos \alpha}{ 1 + \cos \alpha} - \frac{ 1 + \cos \alpha}{ 1 - \cos \alpha} = - \frac{2}{\sin \alpha}$

i) $\frac{2}{\cos^2 \alpha} - 1 = 1 + 2 \tg^2 \alpha$

j) $\frac{1}{1 - \sin \alpha} + \frac{1}{1 + \sin \alpha} = \frac{2}{\cos^2 \alpha}$


Z góry dziękuje za rozwiązanie.
Pozdrawiam,
pawelek


jarah
postów: 448
2011-01-30 11:32:08

$\cos \alpha \cdot \frac{tg \alpha}{\sin \alpha} =\cos \alpha \cdot \frac{sin\alpha}{cos\alpha}\cdot\frac{1}{\sin \alpha} = 1$


jarah
postów: 448
2011-01-30 11:37:15

$1-2 \sin^2 \alpha =sin^{2}\alpha+cos^{2}\alpha-2sin^{2}\alpha=cos^{2}\alpha-sin^{2}\alpha=cos^{2}\alpha-(1-cos^{2}\alpha)=2\cos^2 \alpha - 1$


jarah
postów: 448
2011-01-30 11:39:50

$\frac{\sin \alpha + tg \alpha}{\sin \alpha} = 1+\frac{tg\alpha}{sin\alpha}= 1+\frac{sin\alpha}{cos\alpha}\cdot\frac{1}{sin\alpha}= 1 + \frac{1}{\cos \alpha}$



jarah
postów: 448
2011-01-30 11:41:48

$\frac{\sin \alpha + \cos \alpha}{\cos \alpha}=\frac{cos\alpha}{cos\alpha}+\frac{sin\alpha}{cos\alpha} = 1 + tg \alpha$


jarah
postów: 448
2011-01-30 11:44:19

$\left( \cos^2 \alpha - 1 \right) \left( tg^2 \alpha + 1 \right) + tg^2 \alpha =sin^{2}\alpha+cos^{2}\alpha-tg^{2}\alpha-1+tg^{2}\alpha=1-1= 0$



jarah
postów: 448
2011-01-30 11:46:07

$\left( \frac{1}{\sin \alpha} - \frac {1}{\cos \alpha} \right) \left( \sin \alpha + \cos \alpha \right)=1+ctg\alpha-tg\alpha-1 = ctg \alpha - tg \alpha$


jarah
postów: 448
2011-01-30 12:34:25

$\frac{1}{1 - \sin \alpha} + \frac{1}{1 + \sin \alpha} = \frac{1 + \sin \alpha}{(1 - \sin \alpha)(1 + \sin \alpha)} + \frac{1 - \sin \alpha}{(1 + \sin \alpha)(1 - \sin \alpha)}=\frac{2}{1-sin^{2}\alpha}=\frac{2}{\cos^2 \alpha}$



jarah
postów: 448
2011-01-30 12:38:27

$\frac{2}{\cos^2 \alpha} - 1 = \frac{2sin^{2}\alpha+2cos^{2}\alpha}{cos^{2}\alpha}-1=2+2 tg^2 \alpha-1=1 + 2 tg^2 \alpha$

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2019 Mariusz Śliwiński      o serwisie | kontakt online: 16 drukuj