logowanie

matematyka » forum » liceum » zadanie

Planimetria, zadanie nr 5784

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

nice1233
postów: 141
2016-05-14 16:48:21

Zad 11.Okręgi $O_{1}$($O_{1}$,4 - m) oraz $O_{2}$($O_{2}$,5) są styczne wewnętrznie. Oblicz m, jeśli |$O_{1}O_{2}$|=8.

Zad 12. Dla jakiej wartości parametru m okręgi $O_{1}(O_{1},1)$ i $O_{2}(O_{2},2)$ mają dokładnie jeden punkt wspólny, jeśli |$O_{1}O_{2}$|= |1+m|.

Jeśli ktoś to mógł rozwiązać, bo zrobiłem te zadania ale nie wiem czy dobrze :)

Oto moje rozwiązanehttps://4.bp.blogspot.com/-2ESZWmpofRs/Vy-1cZ8OSnI/AAAAAAAACh4/nyd5gwLXW2sWSuv8aZTHzLcQEHD0x10UwCKgB/s1600/Scan0005.jpg

Wiadomość była modyfikowana 2016-05-14 16:52:18 przez nice1233

tumor
postów: 8085
2016-05-14 17:16:43

11.
Odległość między środkami 8, odległość między środkami + mniejszy promień daje większy promień. Byłoby
8+(4-m)=5 co nie działa, bo dla m=7 będzie promień 4-7=-3
Wobec tego jest
8+5=4-m
m=-9


Błąd w tym zadaniu masz gdy piszesz 5>0 i wyciągasz z tego wniosek, że $m\in (0,5)$.
Nie. m jest DOWOLNE, bo dla m=100 wciąż jest prawdą, że 5>0 i dla $m=\pi$ jest to prawdą i dla m=9823984892389 także jet prawdą, że 5>0.
Wobec tego rzeczywiście m<4 (i dlatego odpada rozwiązanie 7), ale poza tym m dowolne (i dlatego akceptujemy -9)

12.
Mogą być styczne wewnętrznie (wtedy $\mid 1+m \mid =1$, czyli m=0 lub m=-2 )
albo styczne zewnętrznie, wtedy
$\mid 1+m \mid =3$, czyli m=2 lub m=-4

ok



nice1233
postów: 141
2016-05-14 17:21:21

Dzięki :)

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2017 Mariusz Śliwiński      o serwisie | kontakt online: 10 drukuj