logowanie

matematyka » forum » forum zadaniowe - szko砤 ponadpodstawowa » zadanie

Prawdopodobie艅stwo, zadanie nr 966

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

damianek
post贸w: 10
2011-11-09 17:34:21

Asia, Krysia, Ewa i Natalia posz艂y do kina. Na salach usiad艂y losowo na wykupionych kolejnych czterech miejscach. Oblicz prawdopodobie艅stwo 偶e Ewa i Natalia usiad艂y obok siebie.Prosze o pomoc ;)


Szymon
post贸w: 657
2011-11-09 17:54:24

$P(A) = \frac{2!\cdot2!\cdot3}{4!} = \frac{12}{24} = \frac{1}{2}$

Napisa艂em same obliczenie , gdyby by艂o nie zrozumia艂e to mog臋 napisa膰 :)


damianek
post贸w: 10
2011-11-09 18:02:18

prosze jednak o dok艂adne obliczenia gdyz wog贸le nie pojmuje matematyki


Szymon
post贸w: 657
2011-11-09 18:48:53

OK

Dziewczynek by艂o 4 wi臋c mog艂y usi膮艣膰 na 4! sposoby ($1\cdot2\cdot3\cdot4 = 24$). Ewa i Natalia musia艂y usi膮艣膰 ko艂o siebie , oboj臋tnie czy po lewej stronie by艂a Ewa i po prawej Natalia , czy odwrotnie($1\cdot2 = 2! = 2$). Pozosta艂e dwie dziewczynki mog膮 tak偶e usi膮艣膰 na dwa sposoby wi臋c tak偶e 2! . A sposobu siedzenia Ewy i Natalii s膮 nast臋puj膮ce :

EN--
-EN-
--EN

s膮 3 kombinacje , tak jak wspomnia艂em na pocz膮tku Ewa i Natalia mog膮 siedzie膰 na 2 sposoby , pozosta艂e 2 dziewczynki tak偶e na 2 sposoby. Wi臋c :

$P(A) = \frac{2!\cdot2!\cdot3}{4!} = \frac{12}{24} = \frac{1}{2}$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj