logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Algebra, zadanie nr 1108

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

glupol
postów: 10
2013-02-15 15:37:29

Stosując matodę ortogonalizacji Grama-Schmidta znaleźć bazę ortogonalna podprzestrzeni przestrzeni euklidesowej z kanonicznym iloczynem skalarnym rozpięta przez wektory ((5,3,1,1),(11,5,1,1),(13,1,3,1)).


tumor
postów: 8070
2013-02-28 12:10:17

Niech $*$ oznacza iloczyn skalarny, a wektory niech będą kolejno $v_1, v_2, v_3$.

$u_1=v_1=(5,3,1,1)$

$u_2=v_2-\frac{u_1*v_2}{u_1*u_1}u_1=(11,5,1,1)-\frac{55+15+1+1}{25+9+1+1}(5,3,1,1)=(11,5,1,1)-2(5,3,1,1)=(1,-1,-1,-1)$

$u_3=v_3-\frac{u_1*v_3}{u_1*u_1}u_1-\frac{u_2*v_3}{u_2*u_2}u_2=
(13,1,3,1)-\frac{65+3+3+1}{36}(5,3,1,1)-\frac{13-1-3-1}{4}(1,-1,-1,-1)=(13,1,3,1)-2(5,3,1,1)-2(1,-1,-1,-1)=(1,-3,3,1)$

Dostaliśmy
$u_1=(5,3,1,1)$
$u_2=(1,-1,-1,-1)$
$u_3=(1,-3,3,1)$

Wypada sprawdzić, czy są rzeczywiście prostopadłe. Sprawdzam. Są. Znaczy że się nie machnąłem w dodawaniu.

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2019 Mariusz Śliwiński      o serwisie | kontakt online: 19 drukuj