logowanie

matematyka » forum » forum zadaniowe - uczelnie wy縮ze » zadanie

Topologia, zadanie nr 1659

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

agusiaczarna22
post贸w: 106
2013-11-05 22:24:13

Pomo偶ecie???
Czy zbi贸r jest otwarty? Czy jest domkni臋ty. Wska偶 wn臋trze, domkni臋cie i brzeg.
$ A= \left\{x\in R^{3}: x_{1}+x_{2}+x_{3}=1 \right\} \subset R^{3}$


tumor
post贸w: 8070
2013-11-05 22:42:16

Jest domkni臋ty.
Ma puste wn臋trze. Ca艂y jest zatem brzegiem.

A trzeba to pokaza膰.

Zbi贸r $A$ to p艂aszczyzna.
Je艣li we藕miemy $x\notin A$, to znaczy $x_1+x_2+x_3 = y \neq 1$, czyli jaki艣 punkt poza p艂aszczyzn膮 $A$, to istnieje odleg艂o艣膰 tego punktu do p艂aszczyzny (i wz贸r na ni膮, z geometrii).
Bior膮c kul臋 o promieniu takim jak odleg艂o艣膰 lub mniejszym dowodzimy, 偶e $X\backslash A$ jest otwarty, czyli $A$ domkni臋ty.

Bior膮c $x$ o wsp贸艂rz臋dnych takich, 偶e $x_1+x_2+x_3 =1$ (czyli nale偶膮cy do p艂aszczyzny) i dowoln膮 kul臋 o 艣rodku w $x$ dostajemy, 偶e kula ta zawiera te偶 punkty spoza $A$. Czyli $A$ nie jest nadzbiorem 偶adnego zbioru otwartego.

Z powy偶szego - $bd A=A$



agusiaczarna22
post贸w: 106
2013-11-05 23:01:30

艣licznie dzi臋kuj臋:)

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj