logowanie

matematyka » forum » forum zadaniowe - uczelnie wy縮ze » zadanie

Analiza matematyczna, zadanie nr 3012

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

fazi
post贸w: 26
2015-01-07 18:59:42

Prosz臋 o pomoc w rozpisaniu i rozwi膮zaniu zada艅
OBLICZ GRANIC臉
1.a) $\lim_{x \to 2}\frac{x^{3}+x^{2}+3}{x^{2}-1}$

b)$\lim_{x \to -1}\frac{x^{4}-3x+8}{4x-x^{3}}$

c)$\lim_{x \to -3}\frac{(x+2)^{5}}{7-x^{2}}$

d)$\lim_{x \to \frac{\pi}{4}}(\frac{sinx}{cosx}+6)$

e)$\lim_{x \to \frac{\pi}{6}}(ctgx-\sqrt{3})$

2.a)$\lim_{x \to 3}\frac{x^{3}-9x}{3-x}$

b)$\lim_{x \to 4}\frac{x^{2}-16}{x^{2}-4x}$

c)$\lim_{x \to -2}\frac{2x^{2}+3x-2}{x+2}$

d)$\lim_{x \to -6}\frac{x+6}{x^{2}+5x-6}$

e)$\lim_{x \to \frac{1}{2}}\frac{12x^{2}-8x+1}{4x^{2}-1}$
f)$\lim_{x \to 5}\frac{x^{2}-6x+5}{x^{2}-25}$

g)$\lim_{x \to -2}\frac{x^{2}+9x+14}{x^{2}+3x+2}$

h)$\lim_{x \to -3}\frac{x^{3}-x^{2}-12x}{2x+6}$

i)$\lim_{x \to 1}\frac{x^{2}+7x-8}{x^{3}-1}$

3.a)$\lim_{x \to 25}\frac{\sqrt{x}-5}{x-25}$

b)$\lim_{x \to 2}\frac{1-\sqrt{3-x}}{2-x}$

c)$\lim_{x \to 4}\frac{\sqrt{x}-2}{x-4}$



Rafa艂
post贸w: 407
2015-01-07 19:30:17

1.
$a)\lim_{x \to 2}\frac{x^{3}+x^{2}+3}{x^{2}-1}=$$\lim_{x \to 2}\frac{2^{3}+2^{2}+3}{2^{2}-1}=\lim_{x \to 2}=\lim_{x \to 2}\frac{8+4+3}{4-1}=\lim_{x \to 2}=\lim_{x \to 2}\frac{15}{3}=\lim_{x \to 2}5$

b)$\lim_{x \to -1}\frac{x^{4}-3x+8}{4x-x^{3}}=\lim_{x \to -1}\frac{(-1)^{4}-3*(-1)+8}{4*(-1)-(-1)^{3}}=\lim_{x \to -1}\frac{1+3+8}{-4+1}=\lim_{x \to -1}\frac{12}{-3}=\lim_{x \to -1}-4$

c)$ \lim_{x \to -3}\frac{(x+2)^{5}}{7-x^{2}}=\lim_{x \to -3}\frac{(-3+2)^{5}}{7-(-3)^{2}}=\lim_{x \to -3}\frac{(-1)^{5}}{7-9}=\lim_{x \to -3}\frac{-1}{-2}=\lim_{x \to -3}\frac{1}{2}$


Rafa艂
post贸w: 407
2015-01-07 19:55:34

2.
a)
$\lim_{x \to 3}\frac{x^{3}-9x}{3-x}$=$\lim_{x \to 3}\frac{x(x^{2}-9)}{3-x}$=$\lim_{x \to 3}\frac{x(x-3)(x+3)}{3-x}$=$\lim_{x \to 3}\frac{x(x-3)(x+3)}{-(x-3)}$=$\lim_{x \to 3}\frac{x(x+3)}{-1}$=$\lim_{x \to 3}\frac{3(3+3)}{-1}$=$\lim_{x \to 3}\frac{18}{-1}$=$\lim_{x \to 3}-18$

b)Analogicznie jak wy偶ej. W liczniku wz贸r skr贸conego mno偶enia, a w mianowniku wyci膮gasz x przed nawias i si臋 p贸藕niej 艂adnie skr贸ci.

c) $\lim_{x \to -2}\frac{2x^{2}+3x-2}{x+2}$=$\lim_{x \to -2}\frac{2(x+2)(x-0,5)}{x+2}$=$\lim_{x \to -2}{2(x-0,5)}$=$\lim_{x \to -2}{2(x-0,5)}$=$\lim_{x \to -2}{2x-1}$=$\lim_{x \to -2}{2*(-2)-1}$=$\lim_{x \to -2}-5$

W kolejnych przyk艂adach r贸wnie偶 nale偶y przedstawi膰 funkcj臋 kwadratow膮 w postaci iloczynowej i si臋 poskraca i wtedy wystarczy podstawi膰 liczb臋 za x i wyliczy膰 granic臋.


Wiadomo艣膰 by艂a modyfikowana 2015-01-07 19:56:21 przez Rafa艂

tumor
post贸w: 8070
2015-01-07 20:09:23

Ja zauwa偶臋, 偶e w jednym temacie umieszcza si臋 do 5 zada艅, a nie kilkadziesi膮t.

3)
a) przedstawi膰 mianownik jako $(\sqrt{x}-5)(\sqrt{x}+5)$ i skr贸ci膰 z licznikiem.

b) licznik i mianownik pomno偶y膰 przez $1+\sqrt{3-x}$, przy tym mianownika nie wylicza膰, zostawi膰 jako iloczyn. Licznik wyliczy膰, skr贸ci膰 z mianownikiem.

c) manewr jak w a)




abcdefgh
post贸w: 1255
2015-01-07 20:41:49

1.
d) $\lim_{x \to \frac{\pi}{4}}(\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}+6)=7$
e) $\lim_{x \to \frac{\pi}{6}}(ctgx-\sqrt{3})=\sqrt{3}-\sqrt{3}=0$
2.
d) $\lim_{x \to -6}\frac{x+6}{(x+6)(x-1)}=\frac{1}{-6-1}=\frac{-1}{7}$
e) $\lim_{x \to \frac{1}{2}}\frac{(2x-1)(6x-1)}{(2x-1)(2x+1)}=\lim_{x \to \frac{1}{2}} \frac{2}{2}=1$

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj