Analiza matematyczna, zadanie nr 3761
ostatnie wiadomo艣ci | regulamin | latex
| Autor | Zadanie / Rozwi膮zanie |
magda2219 post贸w: 19 | 2015-11-03 18:38:33Wykaza膰, 偶e r贸wnanie Laplace\'a w R^2 postaci: (delta^2*u)/(delta*x^2)+(delta^2*u)/(delta*y^2)=0 we wsp贸艂rzednych biegunowych x=rcosfi y=rsinfi wyraza sie wzorem: (delta^2*u)/(delta*r^2)+(1/r^2)*(delta^2*u)/(delta*y^2)+(1/r)*(delta*u)/(delta*r)=0 |
janusz78 post贸w: 820 | 2015-11-04 22:00:20$\frac{\partial^2 u}{\partial x^2}+ \frac{\partial^2 u}{\partial y^2}=0$ $ x =r\cos(\phi), y = r\sin(\phi)$ $ r^2 = x^2 +y^2, \ \ \tan(\phi) = \frac{y}{x}$ $ r = \sqrt{x^2+y^2},\ \ \phi = \arctan(\frac{y}{x}),$ $\frac{\partial r}{\partial x}= \frac{x}{\sqrt{x^2+y^2}}= \frac{r\cos(\phi)}{r}= \cos(\phi).$ $\frac{\partial^2 u}{\partial x^2}+ \frac{\partial^2 u}{\partial y^2}=0$ $ x =r\cos(\phi), y = r\sin(\phi)$ $ r^2 = x^2 +y^2, \ \ \tan(\phi) = \frac{y}{x}$ $ r = \sqrt{x^2+y^2},\ \ \phi = \arctan(\frac{y}{x}),$ $\frac{\partial r}{\partial x}= \frac{x}{\sqrt{x^2+y^2}}= \frac{r\cos(\phi)}{r}= \cos(\phi).$ $\frac{\partial r}{\partial y}= \frac{y}{\sqrt{x^2+y^2}}= \frac{r\cos(\phi)}{r}= \cos(\phi).$ $ \frac{\partial \phi}{\partial x}= \frac{1}{1+(\frac{y}{x})^2}(-\frac{y}{x^2})=\frac{-y}{x^2+y^2}= -\frac{\sin(\phi)}{r}.$ $ \frac{\partial \phi}{\partial y}= \frac{1}{1+(\frac{y}{x})^2}(\frac{1}{x})=\frac{x}{x^2+y^2}= \frac{\cos(\phi)}{r}.$ Ze wzor贸w na pochodne cz膮stkowe funkcji z艂o偶onej $\frac{\partial u}{\partial x}= \frac{\partial u}{\partial r}\frac{\partial r}{\partial x}+ \frac{\partial u}{\partial \phi}\frac{\partial \phi}{\partial x},$ $\frac{\partial u}{\partial x}= \cos(\phi)\frac{\partial u}{\partial r} - \frac{\sin(\phi)}{r}\frac{\partial u}{\partial \phi}$ (1) $\frac{\partial^2 u}{\partial x^2}= \frac{\partial}{\partial x}(\frac{\partial u}{\partial x})= $ $\cos(\phi)\frac{\partial}{\partial r}(\frac{\partial u}{\partial x})- \frac{\sin(\phi)}{r}\frac{\partial}{\partial \phi}(\frac{\partial u}{\partial x}).$ Stosuj膮c ponownie wz贸r (1) $\frac{\partial^2 u}{\partial x^2}=\frac{\partial}{\partial r}\left(\cos(\phi)\frac{\partial u}{\partial r} - \frac{\sin(\phi)}{r}\frac{\partial u}{\partial \phi}\right)- \frac{\sin(\phi)}{r}\frac{\partial}{\partial \phi}\left(\cos(\phi)\frac{\partial u}{\partial r} - \frac{\sin(\phi)}{r}\frac{\partial u}{\partial \phi}\right)= cos^2(\phi) \frac{\partial^2 u}{\partial r^2}-cos(\phi)\left(-\frac{\sin(\phi)}{r^2}\frac{\partial u}{\partial \phi} +\frac{\sin(\phi)}{r}\frac{\partial^2 u}{\partial r \partial \phi}\right)+$ $-\frac{\sin(\phi)}{r} \left(-\sin(\phi)\frac{\partial u}{\partial r}+\cos(\phi)\frac{\partial^2 u}{\partial \phi \partial r}\right)+ \frac{\sin(\phi)}{r}\left(\frac{\cos(\phi)}{r}\frac{\partial u}{\partial \phi} +\frac{\sin(\phi)}{r}\frac{\partial^2 u}{\partial \phi^2}\right).$ Uwzgl臋dniaj膮c r贸wno艣膰 pochodnych cz膮stkowych mieszanych otrzymujemy $\frac{\partial^2 u}{\partial x^2}= \cos^2(\phi)\frac{\partial^2 u}{\partial r^2}-\frac{2\sin(\phi)\cos(\phi)}{r}\frac{\partial^2 u}{\partial r \partial \phi}+ \frac{\sin^2(\phi)}{r^2}\frac{\partial u^2}{\partial \phi^2}+\frac{\sin^2(\phi)}{r}\frac{\partial u}{\partial r}+ \frac{2\sin(\phi)\cos(\phi)}{r^2}\frac{\partial u}{\partial \phi}$ (2) Podobnie obliczamy pochodn膮 cz膮stkow膮 $\frac{\partial^2 u}{\partial y^2}.$ $\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial u}{\partial \phi}\frac{\partial \phi}{\partial y}.$ $\frac{\partial u}{\partial y}=\sin(\phi)\frac{\partial u}{\partial r}+ \frac{\cos(\phi)}{r}\frac{\partial u}{\partial \phi}.$ Postepujemy tak jak wy偶ej tzn. podstawiamy w miejsce $u, \ \ \frac{\partial u}{\partial y}$ i po uporz膮dkowaniu sk艂adnik贸w sumy otrzymujemy ostatecznie $\frac{\partial^2 u}{\partial y^2}= \sin^2(\phi)\frac{\partial^2 u}{\partial r^2}+\frac{2\sin(\phi)\cos(\phi)}{r}\frac{\partial^2 u}{\partial r \partial \phi}+ \frac{\cos^2(\phi)}{r^2}\frac{\partial u^2}{\partial \phi^2}+\frac{\cos^2(\phi)}{r}\frac{\partial u}{\partial r}- \frac{2\sin(\phi)\cos(\phi)}{r^2}\frac{\partial u}{\partial \phi}$ (3) Po dodaniu stronami (2) i (3) $\frac{\partial^2 u}{\partial x^2}+ \frac{\partial^2 u}{\partial y^2}= (\cos^2(\phi)+\sin^2(\phi))\frac{\partial^2 u}{\partial r^2}+ \frac{\sin^2(\phi)+\cos^2(\phi)}{r^2}\frac{\partial^2 u}{\partial \phi^2}+ \frac{\sin^2(\phi)+\cos^2(\phi)}{r}\frac{\partial u}{\partial r}= \frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2}\frac{\partial^2 u}{\partial \phi^2} + \frac{1}{r}\frac{\partial u}{\partial r} =0.$ |
| strony: 1 | |
Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj
2015-11-03 18:38:33