logowanie

matematyka » forum » forum zadaniowe - uczelnie wy縮ze » zadanie

Algebra, zadanie nr 3833

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

aizdnuka
post贸w: 8
2015-11-17 13:17:13

Witam. Czy kto艣 moglby rozwiazac taka nier贸wno艣膰
3x^5+24>0
X^4> lub rowne 8x^2
Oraz r贸wnanie
x^3 -x +6 =0
2x^5 +3x^3 -16x^2 -24=0
Z gory bardzo dziekuje


tumor
post贸w: 8070
2015-11-17 13:29:29

$ 3x^5+24>0$
$x^5>\frac{-24}{3}$
i pierwiastkujemy.


----
$x^4\ge 8x^2 $
$x^2(x^2-8)\ge 0$
Lewa strona jest r贸wna 0 dla $x=0$, $x=\pm \sqrt{8}$
Te trzy miejsca dziel膮 ca艂膮 o艣 na cztery przedzia艂y. Wystarczy si臋 zastanowi膰, czy w tych przedzia艂ach czynniki $x^2$ oraz $(x^2-8)$ s膮 niedodatnie lub nieujemne


----
$x^3 -x +6 =0$
jednym z rozwi膮za艅 jest x=-2, dzielimy wielomian przez dwumian x+2




-----

$2x^5 +3x^3 -16x^2 -24=0$
grupujemy
$x^3(2x^2+3)-8(2x^2+3)=0$
$(x^3-8)(2x^2+3)=0$
iloczyn jest 0 gdy co najmniej jeden czynnik jest 0, czyli przyr贸wnujemy nawiasy oddzielnie do 0


aizdnuka
post贸w: 8
2015-11-17 14:15:58

Dziekuje za odpowiedz.

strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj