logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Probabilistyka, zadanie nr 4074

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

nowak
postów: 12
2016-01-08 08:54:30

Witam
Proszę o sprawdzenie zapisu

W dziesięciu rzutach kostką sześcienną sześć razy wypadła jedynka. Oblicz prawdopodobieństwo, że jedynka wypadła już za pierwszym razem

$P(I/"6")= \frac{P(I \cap "6")}{P("6")}= \frac{ \frac{1}{6} \cdot {10 \choose 5 } \cdot \left( \frac{1}{6} \right) ^5 \left( \frac{5}{6} \right) ^4 }{{10 \choose 6 } \cdot \left( \frac{1}{6} \right) ^6 \left( \frac{5}{6} \right) ^4 }=...$



tumor
postów: 8070
2016-01-08 08:58:57

W liczniku ${9 \choose 5}$, bo w pierwszym rzucie masz już na pewno wynik ustalony, a w pozostałych dziewięciu dowolne pięć też ma być jedynką.

No i oczywiście gdzieś na kolokwium to musisz opisać, co znaczy I albo "6".


nowak
postów: 12
2016-01-08 09:09:20

I bym opisał jako pierwszy rzut a "6" jako sześć oczek na kostce.

teraz wyszedł mi wynik 0,5999 czy to będzie dobry wynik bo poprzednio wychodziło mi 1,2 ;/


tumor
postów: 8070
2016-01-08 09:27:46

Skądinąd można było to rozumieć nieco prościej.

Jeśli wypadło sześć jedynek i cztery inne, określone wyniki, to miejsca dla jedynek można wybrać na ${10 \choose 6}$ sposobów.
Jeśli jednak wiemy, że pierwsza musi być jedynka, to zostaje ${9 \choose 5}$ sposobów.

Proporcje wyników mających jedynkę jako pierwszą do wszystkich wyników to zawsze będzie $\frac{{9 \choose 5}}{{10 \choose 6}}$, niezależnie od tego, jakie będą te cztery wyniki niebędące jedynkami.

Poza tym często lepiej liczyć ręcznie na ułamkach zwykłych, kalkulator robi błędy zaokrąglenia, prawidłowy wynik to $\frac{6}{10}$

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2019 Mariusz Śliwiński      o serwisie | kontakt online: 64 drukuj