logowanie

matematyka » forum » forum zadaniowe - uczelnie wy縮ze » zadanie

Algebra, zadanie nr 4628

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

mate_matykaa
post贸w: 117
2016-05-31 09:21:14

czy odwzorowanie f: C$\rightarrow$R dan wzorem: f(z)=Re(g(z,z))+Im(g(z,z)), jest dodatnio okre艣lonym funkcjona艂em kwadratowym?
g(z,w)=zw (w z kresk膮 na g贸rze-chyba chodzi o to ze sprz臋偶ony)+zw (z z kresk膮 na g贸rze)
g: $C^{2}$$\rightarrow$C

wiem, 偶e to po chi艅sku napisae, ale inaczej nie umiem :/


tumor
post贸w: 8070
2016-05-31 09:51:12

google mo偶na spyta膰 o polecenia TEXa.

Pewnie chodzi o \overline{w}
wyjdzie $\overline{w}$

$g(z,w)=z\overline{w}$
dla $z=a+bi$ b臋dzie
$g(z,z)=z\overline{z}+\overline{z}z=2(a^2+b^2)$
$Re(g(z,z))=g(z,z)=2(a^2+b^2)$
$Im(g(z,z))=Im(2(a^2+b^2))=0$

czyli $f(z)=2(a^2+b^2)$
$f(kz)=f(ka+kbi)=2k^2(a^2+b^2)=k^2f(z)$ jest jednorodna stopnia 2

niech teraz $w=c+di$
ze wzoru polaryzacyjnego
$\frac{1}{2}(f(z+w)-f(z)-f(w))=\frac{1}{2}(2((a+c)^2+(b+d)^2)
-2(a^2+b^2)-2(c^2+d^2))=\frac{1}{2}*2*(2ac+2bd)=2ac+2bd$

Nale偶y jeszcze sprawdzi膰, czy $g(z,w)=2ac+2bd$ jest form膮 dwuliniow膮. Mo偶e sprawdzisz? To 艂atwe warunki.

Je艣li wyjdzie, 偶e tak, to pozostanie sprawdzi膰, czy dla niezerowych z b臋dzie $f(z)>0$, ale oczywi艣cie b臋dzie.


mate_matykaa
post贸w: 117
2016-05-31 10:17:46

a jak sprawdzi膰, czy to odwzorowanie jest dwuliniowe nad C?


mate_matykaa
post贸w: 117
2016-05-31 10:23:31

w tym ostatnim zdaniu chodzi o to?: f(z)=2($a^{2}$+$b^{2}$) >0
($a^{2}$+$b^{2}$)>0 i w takiej postaci zostawi膰 czy jak?


tumor
post贸w: 8070
2016-05-31 10:45:35

a czy zgadzasz si臋 z tym, 偶e je艣li $a+bi\neq 0$, to $2a^2+2b^2>0$?

-----

呕eby sprawdzi膰 dwuliniowo艣膰 sprawdzamy warunki, kt贸re masz podane. Wyk艂ady to taka pomoc dla studenta, 偶eby mia艂 wiedz臋.

spe艂niony ma by膰 warunek
$g(z_1+z_2,w)=g(z_1,w)+g(z_2,w)$
i podobny dla drugiej zmiennej, jak r贸wnie偶
$g(kz,w)=k*g(z,w)$
i podobny dla drugiej zmiennej.



strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj