logowanie

matematyka » forum » forum zadaniowe - uczelnie wyższe » zadanie

Inne, zadanie nr 537

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

aaakuuus02
postów: 19
2012-10-13 21:39:06

NEXT ZADANKO. ;)

Znaleźć zbiór G, na który zadana funkcja przekształca dany zbiór F:

1) y= $x^{2}$ , F = ( -1,2 ) <- powinny być nawiasy kwadratowe.

2) y= |x| , F={ x : 1 $\le$ |x| $\le$ 2 }

3) y= $\frac{x}{2x-1}$ , F = ) 0,1 ( <- i tu.

4) y= $log_{3}$ x , F = ) 3, 27 ( <-tu też kwadr.


agus
postów: 2315
2012-10-13 21:41:29

1)

G=<0;4>


aaakuuus02
postów: 19
2012-10-13 21:51:06

hmm ? a dlaczego tak ?


agus
postów: 2315
2012-10-13 21:55:08

3)

Do zboru F nie należy $\frac{1}{2}$
G=(-$\infty$;0>$\cup$<1;+$\infty$)



agus
postów: 2315
2012-10-13 21:58:16

1)
Podnosząc do kwadratu liczby ze zbioru <-1;0> otrzymamy liczby ze zbioru <0;1>, podnosząc do kwadratu liczby ze zbioru <0;2> otrzymamy liczby ze zbioru <0;4>. Ostatecznie G=<0;4>


tumor
postów: 8070
2012-10-13 22:03:11

2)$f(x)=y= |x| , F=\{ x : 1 \le |x| \le 2 \}=[1,2]\cup[-2,-1]$

Funkcja jest ciągła. Dla dodatnich $x$ rosnąca. Czyli

obraz zbioru $f([1,2])=[f(1),f(2)]=[1,2]$

Natomiast z parzystości funkcji $f$ wystarczy rozpatrzyć argumenty dodatnie. Ostatecznie $G=[1,2]$




agus
postów: 2315
2012-10-13 22:03:54

4)

G=<1;3>


tumor
postów: 8070
2012-10-13 22:05:14

4)
$f(x)=y=log_3x$

$x\in R_+$

$f$ jest rosnąca i ciągła.

$G=f([3,27])=[f(3),f(27)]=[log_33,log_327]=[1,3]$

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2019 Mariusz Śliwiński      o serwisie | kontakt online: 45 drukuj