logowanie

matematyka » forum » forum zadaniowe - uczelnie wy¿sze » zadanie

Statystyka, zadanie nr 6292

ostatnie wiadomoÅ›ci  |  regulamin  |  latex

AutorZadanie / RozwiÄ…zanie

matematyk97
postów: 1
2020-05-20 21:46:40

Bardzo proszÄ™ o pomoc w rozwiÄ…zaniu zadania.

Paradoks Petersburski dotyczący średniej arytmetycznej.
Inwestor stara się o pożyczkę w wysokości 1 miliona dolarów. na dokończenie inwestycji. Po zapoznaniu się z warunkami płatniczymi Inwestora oraz koniunkturą w danej branży Bank wyraził zgodę na udzielenie kredytu i wyznaczył ratę miesięczną w wysokości $x \$.$ Ze względu na wysokość raty Inwestor ma szansę 1 do 1, że w każdym miesiącu zapłaci ratę (z czego obie strony zdają sobie sprawę). W związku z dużym ryzykiem Bank złożył Inwestorowi ciekawą propozycję: Bank umorzy kredyt, gdy chociaż raz uda się Inwestorowi zapłacić ratę w dowolnym miesiącu, pod dwoma warunkami:
(1) Za pierwszy miesiąc Inwestor zapłaci bankowi $1\$,$ gdy nie będzie miał na ratę, jeżeli w drugim miesiącu nie będzie miał na ratę - za drugi miesiąc dodatkowo zapłaci $2\$,$ jeżeli nie będzie znowu mógł spłacić raty - za trzeci miesiąc dodatkowo zapłaci $2^{2}\$$ itd., za $n-$ty miesiąc - $2^{n-1}\$.$
(2) Kwoty z punktu pierwszego Inwestor musi płacić; gdy nie ma pieniędzy na następną zapłatę z punktu pierwszego musi ogłosić bankructwo i przekazać cały majątek Bankowi.


Niech X będzie zmienną losową opisującą miesięczne wpłaty Inwestora, w przypadku, gdyby cały czas miał pecha (tj. $2^{n}, n=1,2, \ldots\$$). Opierając się na interpretacji średniej arytmetycznej podejmij decyzję w imieniu Inwestora i spróbuj wyjaśnić dlaczego pomimo faktu, że $\overline{\textbf{X}}= \infty,$ Inwestor nie stoi na straconej pozycji, w przypadku zaciągnięcia tego typu kredytu.

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj

© 2019 Mariusz ¦liwiñski      o serwisie | kontakt   drukuj