logowanie

matematyka » forum » zadania » zadanie

Konkursy, zadanie nr 289

ostatnie wiadomości  |  regulamin  |  latex

AutorZadanie / Rozwiązanie

krismk3
postów: 1
2019-01-25 20:19:20

Przede wszystkim na początku chciałbym wszystkich gorąco przywitać. Zarejestrowałem się na forum ponieważ mam problem z policzeniem pewnego elementu. Otóż już tłumaczę w czym rzecz.
Mam policzyć poziom wody w najniższym miejscu rowu przydrożnego o kształcie trapezu przy następujących znanych:
Szerokość dna rowu „C”, pochylenie ścian rowu (stosunek 1:1,5) – n1 i n2, głębokość rowu – h,
Objętość napływającej wody – V, oraz pochylenie rowu przed najniższym miejscem oraz za najniższym miejscem – i1 i i2 w %.
Generalnie mam problem z identyfikacją figury jaką tworzy objętość wody. Jest to wg. mnie figura składająca się z 2 ostrosłupów (na każdą stronę rowu) o podstawie trapezu (najniższe miejsce) z czego posiada 2 ściany o kształcie trójkąta i 2 ściany prostokątne, które pochylone są pod kątem (%) do płaszczyzny prostopadłej do podstawy tego ostrosłupa.
Utknąłem w jednym miejscu udało mi się policzyć jedynie zasięg na jakiej długości woda będzie zalegała (z przekształconego wzoru Simsona) natomiast głównie zależy mi na policzeniu poziomu wody w najniższy miejscu niwelety.
Zależy mi głównie na wyprowadzeniu wzoru przy uwzględnieniu ww. danych w taki sposób aby można było obliczyć różne przypadki szerokości dna rowu jego wysokości itp.
Z góry dziękuję wszystkim, którzy postanowią mi pomóc.
w poniższym linku przykładowe rysunki odzwierciedlające zadanie
https://we.tl/t-5ZLdwY5VPo

strony: 1

Prawo do pisania przysługuje tylko zalogowanym użytkownikom. Zaloguj się lub zarejestruj





© 2017 Mariusz Śliwiński      o serwisie | kontakt online: 52 drukuj