Pochodne funkcji elementarnych
| Funkcja |
Pochodna funkcji |
Uwagi o funkcji |
| | | |
| y = c |
y' = 0 |
c∈R |
| y = xα |
y' = αxα-1 |
α∈R (x zależne od α) |
|
y =
|
y' =
|
x∈R\{0} |
| y =
|
y' =
|
x∈R+∪{0} |
| y = ax |
y' = axlna |
x∈R, a∈R+ |
| y = ex |
y' = ex |
x∈R |
| y = logax |
y' =
logae =
|
x∈R+, a∈R+\{1} |
| y = lnx |
y' =
|
x∈R+ |
| y = sinx |
y' = cosx |
x∈R |
| y = cosx |
y' = -sinx |
x∈R |
| y = tgx |
y' =
|
x∈R,
x≠
π + kπ, k∈C
|
| y = ctgx |
y' =
|
x∈R,
x≠kπ, k∈C |
| y = arcsinx |
y' =
|
x∈(-1, 1) |
| y = arccosx |
y' =
|
x∈(-1, 1) |
| y = arctgx |
y' =
|
x∈R |
| y = arcctgx |
y' =
|
x∈R |