logowanie

matematyka » analiza » ciągi liczbowe » szereg geometryczny

Szereg geometryczny

Ciąg nieskończony (Sn) o wyrazie ogólnym Sn = a1 + a1q + a1q2 + ... + a1qn-1 nazywamy ciągiem sum częściowych ciągu geometrycznego (an) lub szeregiem geometrycznym.
               a1 + a1q + a1q2 + ... + a1qn-1 + ... = n=1 a1 · qn-1

Ciąg sum częściowych (Sn) ciągu geometrycznego jest zbieżny i ma granicę S (szereg geometryczny ma sumę S), wtedy i tylko wtedy, gdy |q| < 1 lub a1 = 0 i wówczas:               S = lim n S n = a1 1-q ,   gdy |q| < 1 lub
              S = 0,   gdy a1 = 0

Ułamki okresowe
Każda liczba wymierna ma rozwinięcie dziesiętne skończone lub nieskończone okresowe. Korzystając z własności ciągu geometrycznego można zamienić ułamek nieskończony okresowy na ułamek zwykły.





© 2018 Mariusz Śliwiński      o serwisie | kontakt online: 13 drukuj