Teoria mnogo艣ci, zadanie nr 4683
ostatnie wiadomo艣ci | regulamin | latex
| Autor | Zadanie / Rozwi膮zanie |
geometria post贸w: 865 | 2016-06-10 17:41:051) [k, k+1) jest nieskonczony, rownoliczny z $R$ zatem jego moc | [k, k+1)|=$c$. 2) (a;+$\infty$), ($- \infty,b)$ nieskonczone rownoliczne z $R$. Ich moc to $continuum$. 3) A={($- \infty;0$), (0;+$\infty$)}. Zbior A jest skonczony, przeliczalny. Moc |A|=2 (bo zbior A ma tylko dwa elementy, tymi elementami sa przedzialy) 4) B={($- \infty$;$- 2$), (3; +$\infty$), [$-2$,3]}. Zbior B jest skonczony, przeliczalny. Moc |B|=3. 5) C={(a,b): a,b$\in R$}. Elementami zbioru C sa pary uporzadkowane. Zbior C jest nieskonczony. Ale jaka ma moc continuum czy alef zero? (czy jest rownoliczny z $R$ czy z $N$)? 6) D={(a,b)} dla a,b$\in R$. Zbior D jest skonczony, przeliczalny, jednoelementowy. Moc |D|=1. |
tumor post贸w: 8070 | 2016-06-10 19:51:425) Nie mo偶e mie膰 mocy ni偶szej ni偶 c, bo przecie偶 wszystkie pary $(a,0)$ tam nale偶膮, jest ich dok艂adnie tyle ile liczb rzeczywistych a. Zatem co najmniej c. Dobrze by艂oby pokaza膰, 偶e $R^2$ jest r贸wnoliczny z $R$, polecam twierdzenie Cantora-Bernsteina, bo jest 艂atwiejsze ni偶 robienie bijekcji, ale bijekcj臋 te偶 si臋 da. ;) |
geometria post贸w: 865 | 2016-06-10 20:11:55E={(a,b): a$\in Q \wedge b\in Q$} F={(a,b): a$\in Q \wedge b\in R$} G={(a,b): a$\in R \wedge b\in Q$} H={(a,b): a$\in N \wedge b\in N$} I={(a,b): a$\in N \wedge b\in Q$} J={(a,b): a$\in N \wedge b\in R$} K={(a,b): a$\in Z \wedge b\in N$} L={(a,b): a$\in Z \wedge b\in Q$} M={(a,b): a$\in Z \wedge b\in R$} Rozumiem, ze w zaleznosci od tego do jakiego zbioru liczb naleza wspolrzedne zmienia sie moc zbioru? |
tumor post贸w: 8070 | 2016-06-10 20:24:09Wszystkie powy偶sze maj膮 moc albo $c$ albo $\aleph_0$. Przypomn臋 tylko, 偶e $N^2$ r贸wnoliczny z N, $R^2$ r贸wnoliczny z R, a zreszt膮 og贸lnie je艣li $X$ jest zbiorem niesko艅czonym, to $X^2$ ma t臋 sam膮 moc co $X$. Twierdzenie Hessenberga (om贸wione np. w B艂aszczyk, Turek \"Teoria mnogo艣ci\") to kt贸re s膮 przeliczalne? |
geometria post贸w: 865 | 2016-06-10 20:32:45E, H, I, K, L maja moc $\aleph_{0}$ (bo $N\sim Z\sim Q$; odpowiednie wspolrzedne naleza do zbiorow, ktore sa przeliczalne np. w I $N\sim Q$) pozostale maja moc c. |
tumor post贸w: 8070 | 2016-06-10 20:50:55ok |
geometria post贸w: 865 | 2016-06-10 20:58:33No dobrze. A wezmy np. M. Jak za b wstawie zero, czyli bedzie para (a,0), a$\in Z$ dlaczego wowczas nie jest mocy alef zero? Z drugiej strony za a wstawie 0 mam pare (0,b), a$\in R$ jest mocy c. |
tumor post贸w: 8070 | 2016-06-10 21:08:53Zbi贸r par, w kt贸rych pierwsza wsp贸艂rz臋dna jest ca艂kowita, a druga jest zerem, jest mocy $\aleph_0$. Tylko nie o to w tym zadaniu pytaj膮. :) Podzbiory, misiek. Je艣li masz zbi贸r nieznanej mocy, to informacja $\aleph_0 \le \mid X \mid \le c$ nie m贸wi bardzo wiele, a informacja $c \le \mid X \mid \le c$ ju偶 nam m贸wi, 偶e X ma moc c. Dlatego w przypadku M najlepiej pokaza膰, 偶e ma i podzbi贸r mocy c (czyli zbi贸r par (0,b) dla $b\in R$) i nadzbi贸r mocy c (tu $R^2$) |
geometria post贸w: 865 | 2016-06-10 22:20:37A taki zbior U={{(a,b): a,b$\in R$}}? Wowczas zbior U ma jeden element-jeden zbior, jego moc |U|=1. |
geometria post贸w: 865 | 2016-06-10 23:22:59P={{(a,b)}, gdzie a,b$\in R$} Elementami zbioru P sa zbiory jednoelementowe, do ktorych nalezy para uporzadkowana. Takich zbiorow jednoelementowych jest nieskonczenie wiele, czyli zbior P jest nieskonczony. Wedlug mnie zbior P jest rownoliczny z $N$. Zatem moc zbioru P to |P|=$\aleph_{0}$. |
| strony: 1 2 | |
Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj
2016-06-10 17:41:05