Teoria mnogo艣ci, zadanie nr 4449
ostatnie wiadomo艣ci | regulamin | latex
| Autor | Zadanie / Rozwi膮zanie |
geometria post贸w: 865 | 2016-04-13 23:35:56Dziekuje. x,y$\in R$ c) $\forall_{x}$$\exists_{y}$(x<z$\wedge$z<y) Nie, bo np. dla z=0 mamy takie zdanie $\forall_{x}$$\exists_{y}$(x<0$\wedge$0<y), ktore jest falszywe np. dla x=0, bo wtedy 0<0 a to nie jest prawda i koniunkcja jest juz falszywa, czyli nie dla kazdego x jest to prawdziwe. Wykresem bedzie podzbior prostej, w tym przypadku bedzie to zbior pusty. d) $\exists_{y}$x*y=1 Wykresem bedzie podzbior prostej. W tym przypadku bedzie to rzut na os OX wykresu x*y=1, czyli $\pi_{x}$[x*y=1]={x$\in R$: $\exists_{y}$ takie, ze $<$x,y$>$ $\in$ x*y=1}=$R\backslash${0} |
tumor post贸w: 8070 | 2016-04-13 23:50:29c) b臋dzie to zbi贸r pusty, ale w argumentacji nie wystarcza, 偶e na przyk艂ad z=0. Bo tak nie uzasadniasz, 偶e z=5 r贸wnie偶 tego nie spe艂nia albo z=234890843 nie spe艂nia. Og贸lnie, je艣li mamy z, to nie jest prawd膮, 偶e dla ka偶dego x b臋dzie x<z. Wobec tego i koniunkcja z dowolnym innym warunkiem nie b臋dzie prawd膮. d) ok |
geometria post贸w: 865 | 2016-04-14 01:37:14e) p(x,y)=($\forall_{t} \in R$)(x=2t$\Rightarrow$y=2t) Wykresem bedzie podzbior plaszczyzny. Po przeksztalceniu ($\forall_{t} \in R$)(x$\neq$2t$\vee$y=2t) tutaj nie wiem dokladnie wydaje mi sie, ze bedzie tak: x$\neq$2t to zbior pusty, a y=2t to cala plaszczyzna OXY. Skoro to jest alternatywa to ostatecznie wykresem bedzie cala plaszczyzna OXY. Wowczas $\exists_{x}$ p(x,y)=$R$ i $\exists_{y}$ p(x,y)=$R$. f) p(x,y)=($\exists_{t} \in R$)(x=2t $\wedge$ y=3t) t=$\frac{x}{2}$ zatem y=$\frac{3}{2}$x. Wykresem bedzie prosta y=$\frac{3}{2}$x w plaszczyznie OXY. Wowczas $\exists_{x}$ p(x,y)=$R$ i $\exists_{y}$ p(x,y)=$R$. |
geometria post贸w: 865 | 2016-04-14 02:19:49g) p(x,y)=($\exists_{t}>0$) (x=2t $\wedge$ y=3t) t=$\frac{x}{2}$, ale $\exists_{t}>0$ wiec $\frac{x}{2}$>0 /*2 x>0 czyli x>0 $\wedge$ y=3t , t=$\frac{x}{2}$ Wykresem bedzie prosta y=$\frac{3}{2}$x dla x>0 na plaszczyznie OXY. Wowczas $\exists_{x}$ p(x,y)=$\exists_{y}$ p(x,y)=$R$. h) p(x,y)=($\forall_{t} \in R$) (x=2t $\Rightarrow$ y=3t) Po przeksztalceniu ($\forall_{t} \in R$) (x$\neq$2t $\vee$ y=3t). zobacze co bedzie w e) i) p(x,y)=($\forall_{t} \in R$) y=t*y 1. y$\neq$0 t=1 (jak y$\neq$0, to ta formula zachodzi tylko dla t=1, wiec nie dla kazdego t) 2. y=0 0=0*t 0=0 prawda dla kazdego t$\in R$ 1$\cup$2=2 a wiec prawdziwe dla kazdego t$\in R$. Wykresem bedzie podzbior prostej. Wydaje mi sie, ze to bedzie {0} (bo tylko dla y=0 bylo to prawd膮). -------------------------------------------------- A co by bylo gdyby te funkcje zdaniowe wygladaly tak: (*) p(x,y)=($\exists_{t}\in R$) (x=2t $\vee$ y=3t) (**) p(x,y)=($\exists_{t}\in R$) (x=2 $\vee$ y=3t) (***) p(x,y)=($\exists_{t} \in R$) (x=2 $\wedge$ y=3t)? |
tumor post贸w: 8070 | 2016-04-14 09:48:29e) przypu艣膰my, 偶e $x=x_0$. Wtedy oczywi艣cie istnieje $t_0$ takie, 偶e $x=2t_0$, czyli $y=2t_0=x$. punkt $(x_0,x_0)$ nale偶y do wykresu. Ale je艣li $y_0\neq x_0$, to punkt $(x_0,y_0)$ nie spe艂nia $\forall_{t}(x=2t \Rightarrow y=2t)$, bo nie spe艂nia tego dla $t=\frac{x_0}{2}$. Wykresem jest prosta y=x. Przetestuj sobie na punktach $(8,8)$ (spe艂nione dla $t\neq 4$ i dla t=4, czyli dla wszystkich t) i $(4,6)$ (spe艂nione tylko dla $t\neq 2$) Natomiast rzuty tej prostej na osie to za ka偶dym razem R. f) ok g) rzuty to $R_+$ h) rzeczywi艣cie analogicznie do e) i) funkcja zdaniowa jednej zmiennej czy dw贸ch? ---- (*) ca艂a p艂aszczyzna (**) ca艂a p艂aszczyzna, bo dla dowolnego punktu istnieje t spe艂niaj膮ce drugi z warunk贸w (***) prosta x=2, pierwsza wsp贸艂rz臋dna musi by膰 2, natomiast dla dowolnej drugiej znajdziemy t. |
geometria post贸w: 865 | 2016-04-14 09:57:26i) dw贸ch zmiennych |
tumor post贸w: 8070 | 2016-04-14 10:13:35i) y musi by膰 0, x mo偶e by膰 dowolny. Taki w艂a艣nie wykres: podzbi贸r p艂aszczyzny dla kt贸rego y=0, czyli o艣 OX. Sprawd藕 na punktach. (1,0) spe艂nia, (0,0) spe艂nia, (0,1) nie spe艂nia, (1,1) nie spe艂nia. |
geometria post贸w: 865 | 2016-04-14 15:27:27h) p(x,y)=($\forall_{t} \in R$)(x=2t$\Rightarrow$y=3t), czyli ($\forall_{t} \in R$)(x$\neq$2t$\vee$y=3t) Tutaj mam problem. bo dla punktu o wspolrzednych (2t,3t) jest spelnione dla kazdego t. (np. (0,0), (2,3), (4,6), (6,9) itd.) dla punktu (2,3): t$\neq$$\frac{x}{2}$$\neq$$\frac{2}{2}$$\neq1$ $\vee$ t=$\frac{y}{3}$=$\frac{3}{3}$=1 Dla pozostalych chyba nie bedzie prawdziwe. Zatem wykresem bedzie zbior {(x,y)$\in R^{2}$: (2t,3t)$\in p(x,y)$}, czyli zbior punktow postaci (2t,3t). Mozliwe, ze zle to rozumiem. Ale jezeli to jest dobrze to jakie beda rzuty na osie? |
geometria post贸w: 865 | 2016-04-14 18:06:09j) $\forall_{x}$ x*y<1 Wykres to {0}, bo tylko dla y=0 to jest spelnione dla kazdego x albo wykres to zbior pusty, bo dla x=3 i y=2 jest 6<1 czyli nieprawda dla kazdego x. (nie wiem, ktore poprawne) k) $\forall_{x}$ $x^{2}$+1<y Wykres to zbior pusty, bo dla x=0 i y=0 jest 1<0 czyli nieprawda dla kazdego x. Wiadomo艣膰 by艂a modyfikowana 2016-04-14 18:11:41 przez geometria |
geometria post贸w: 865 | 2016-04-14 21:40:34l) ($\exists_{z}\in R$)(|z|=x$\wedge$ y=z-1) |z|=x , x$\ge$0 z=x $\vee$ z=-x Wykresem beda dwie polproste: y=x-1 ; x$\ge$0 oraz y=-x-1 ; x$\ge$0. m) ($\exists_{z}\in R$)(x<z $\wedge$ z<y) korzystajac z prawa przechodnosci mam x<y. Wykresem bedzie polplaszczyzna y>x. n) ($\exists_{z>0}$)(x-1)(y-2)z>1 Tutaj nie wiem jak to zrobic. |
| strony: 1 2 3 | |
Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj
2016-04-13 23:35:56