logowanie

matematyka » forum » forum zadaniowe - uczelnie wy縮ze » zadanie

Analiza matematyczna, zadanie nr 716

ostatnie wiadomo艣ci  |  regulamin  |  latex

AutorZadanie / Rozwi膮zanie

marcin2002
post贸w: 484
2012-11-28 19:28:31

2. Obliczy膰 granic臋 ci膮gu $\lim_{n \to \infty}(\frac{n^{2}+3n}{n^{2}+4})^{n-1}$




tumor
post贸w: 8070
2012-11-28 19:44:20

$(\frac{n^2+3n}{n^2+4})^{n-1}=
(\frac{n^2+4+3n-4}{n^2+4})^{n-1}=
(1+\frac{3n-4}{n^2+4})^{n-1}=
(1+\frac{3n-4}{n^2+4})^{\frac{n^2+4}{3n-4}\frac{3n-4}{n^2+4}(n-1)}=
\left((1+\frac{3n-4}{n^2+4})^{\frac{n^2+4}{3n-4}}\right)^\frac{(3n-4)(n-1)}{n^2+4}\longrightarrow e^3$




marcin2002
post贸w: 484
2012-11-28 20:29:20

dlaczego wychodzi e do trzeciej?



tumor
post贸w: 8070
2012-11-28 20:34:28

To, co jest w du偶ym nawiasie, to praktycznie

$(1+\frac{1}{n})^n$

czyli zbiega do $e$. W tym wzorze nie ma znaczenia, czy jest $n$, czy $2n$, czy $8723847n^{17}$. Istotne jest, 偶e w miejscu $n$ jest dwukrotnie to samo wyra偶enie, kt贸re d膮偶y do $+\infty$. Wtedy granic膮 jest $e$.

Natomiast wyk艂adnik nad du偶ym nawiasem ma granic臋 r贸wn膮 3 (do policzenia oddzielnie, ale bardzo prosta).



strony: 1

Prawo do pisania przys艂uguje tylko zalogowanym u偶ytkownikom. Zaloguj si臋 lub zarejestruj

© 2019 Mariusz iwi駍ki      o serwisie | kontakt   drukuj